Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Ifeyinwa Orakwe

Ifeyinwa Orakwe

Robert Gordon University, United Kingdom

Title: Integrated catalytic membrane reactor process for CO2 reforming of methane

Biography

Biography: Ifeyinwa Orakwe

Abstract

The greenhouse gases which are majorly CH4 and CO2 have raised concerns throughout the world due to their link to global warming and climate change. Research is ongoing to develop methods that can be applied commercially for the utilization of flue gases into useful products such as syngas. There are methods currently in use commercially such as the steam reforming and partial oxidation reforming for syngas production, but due to the requirement of very high operating temperatures, these methods are not usually economical for commercial syngas production. Recently, the use of membrane technology has drawn so much interest. In this study, a CO2 reforming method employing a catalytic membrane reactor process was built to study the CO2 reforming of methane. The membrane used was a tubular mesoporous tube consisting of Al2O3, with the rhodium catalyst impregnated into its pores by the wet impregnation method. The impregnation method allows for the catalyst to be deposited into the pores on the outer surface of the membrane. A flue gas stream comprising of CO2-12.5%, CH4-2.5%, CO-50ppm, N2-80.595%, O2-4.4% was feed into the reactor system as soon in figure 1 under various operating conditions: temperature range 700oC-900oC and flowrates of 0.45 and 1.50 Lmin-1. The exit stream was connected to a GCMS which was used to interpret the results. At 700oC, no conversions were realized but at 900oC, CO2 and CH4 conversions reached above 94%. Our catalytic membrane process is therefore a viable and effective technological breakthrough which converts the two most important greenhouse gases CH4 and CO2 into valuable syngas without the need for CO2 pre-separation from flue gas.

Speaker Presentations

Speaker PPTs Click Here